Evaluation of current methods for creep analysis and impression creep testing of power plant steels
نویسنده
چکیده
Destructive testing of creep exposed components is a powerful tool for evaluation of remaining lifetime of high temperature pipe systems. The most common destructive evaluation method used today is uniaxial creep testing. Uniaxial creep tests can produce accurate creep curves but the test method has some drawbacks such as costliness and long testing times. It also demands large sample material outtake which often involve weld repair. Impression creep (IC) testing is a relatively new alternative test method for evaluating primary and secondary creep rates. The scope of this work is to evaluate the benefits and drawbacks of IC testing over uniaxial creep testing in order to determine its usefulness as a test method. A literature survey was carried out over the area creep testing of high temperature pipe systems, with particular focus on impression creep testing. The result of the literature survey clearly showed several benefits with impression creep testing. An IC test series was performed in order to determine the secondary creep rate of a service exposed 10CrMo9-10 high temperature pipe steel. The IC tests were performed by VTT in Finland, using the same test parameter and sample material as in previous projects where the creep properties of the test material were determined by uniaxial creep testing. The result of the predicted secondary creep rate obtained from the IC tests was compared with the secondary creep rates measured during the uniaxial tests. The IC tests results did not align satisfactory with the results from the uniaxial creep tests, which would have been expected. The reason for this may be due to sources of error during impression creep testing, since very small displacements due to creep have to be measured with high precision during the tests. Further testing of the impression creep test method is recommended as a result of this work, in order to evaluate the method.
منابع مشابه
Development of a new creep testing equipment to obtain long-term deformation parameters of salt rocks
Creep phenomenon in rock engineering plays a key role in development of underground spaces as they must be stable enough for a long period of time. Current research involved designing and manufacturing of a new creep testing machine. The equipment is capable to perform simultaneous light-duty creep tests on more than one cylindrical rock samples at a very low cost.To evaluate the equipment’s pe...
متن کاملRecent Advances in Creep Resistant Steels for Power Plant Applications
The higher steam temperatures and pressures required to achieve an increase in the thermal efficiency of fossil fuel fired power generation plant necessitate the application of steels with improved creep rupture strength. The 9% chromium steels developed during the last three decades are of great interest for components of advanced, high efficiency power plant. In this Paper, the development of...
متن کاملModelling precipitation sequences in power plant steels
New kinetic theory capable of dealing with the simultaneous precipitation of several phases has been applied to a variety of creep resistant power plant steels. It has been demonstrated that the model has the ability to predict the vast differences in precipitation kinetics reported in the published literature for power plant steels. New experimental results on precipitation in a 9Cr 1 Mo type ...
متن کاملA review of non-destructive techniques for the detection of creep damage in power plant steels
The assessment of creep damage in steels employed in the power generation industry is usually carried out by means of replica metallography, but the several shortcomings of this method have prompted a search for alternative or complementary non-destructive techniques, ranging from ultrasonic to electromagnetic methods, hardness measurements and nuclear techniques. A critical review of the main ...
متن کاملCreep Stress Redistribution Analysis of Thick-Walled FGM Spheres
Time-dependent creep stress redistribution analysis of thick-walled FGM spheres subjected to an internal pressure and a uniform temperature field is investigated. The material creep and mechanical properties through the radial graded direction are assumed to obey the simple power-law variation throughout the thickness. Total strains are assumed to be the sum of elastic, thermal and creep strain...
متن کامل